
Software Technique in VITESS
Michael Fromme

Arbeitsgruppe Anwendersoftware
Hahn-Meitner-Institut Berlin

This report is an updated and more verbose treatment on VITESS software technique taken from a contribution to the
2001 workshop at HMI and updated to news of version 2.8 in 2008.

VITESS Software

First we learn about the building blocks of VITESS and it's design principles. Then we get to know features of the
VITESS graphical user interface and how to use them for new modules. Existing software tools are best used if you
stick to some conventions.
To make things clear we then examine step by step how to integrate a new simulation module in a one-shows-all
program example.

VITESS Building Blocks

Piped Commands

The most basic thing for VITESS programs from the beginning was that modules represent parts of the chain, from
neutron source to moderators and guides up to detectors, as single programs which communicate by means of pipes,
where data representing the neutron sample flow as output of one module to the input of the next module.
This makes modules fairly simple. They only have to agree on the data format for neutrons in the pipe, and could be
parametrised by very individual means. In practice we have command options and parameter files to let modules know
what to do.

Parameters as Command Arguments

In the course of development it proved fruitful to have some common parameter passing syntax. Because we had no
module with more than 26 parameters then it seemed sufficient to reserve a single letter for command options, and to
put the adjunct argument right after with no space in between like
-pxxx
where p is the single option letter, and xxx is a placeholder for an arbitrary argument.
Some parameters are valid for all modules, are shown to all modules, they have the form
--Pddd
like here for the default parameter directory.
This is not standard for command shells, but easy to parse.

Users are not confronted by hundreds of parameters on a single command line, but use the Graphical User Interface
(GUI) to generate commands with the appropriate options.

VITESS Design Principles

Multi Platform Support

You need just a C compiler like GNU gcc and Tcl/TK support for your computer and operating system, which means it
is easy to compile and adjust VITESS for Microsoft Windows and most Unix variants. As for now VITESS is ready to
be used with MS Windows and Linux (32 and 64 bit systems). It has been used with Solaris and Tru64, too.

Easy Integration of new Simulation Modules

You may contribute own modules very easily. If your module knows how to read from standard input and write to
standard output, that's all you need to use it as an external module. For tighter integration to the GUI you just enter
some lines of Tcl code, and you will learn here where and why.

19/02/08 1

Consistency of Parameters

With the Tcl/TK GUI you have the glue to operate your module, that is to check the consistency of parameters, control
the execution of the overall pipe, save and restore parameter settings, and even visualise the output.

Features of the VITESS GUI

Parameters

It's up to the GUI part to provide defaults for parameters. They may be range-checked and more complex cross checks
may be done here.
By now parameters are mostly of two sorts: Those which are entered and shown with the module on the main VITESS
module window and those which are put aside to text parameter files. The latter are for parameters which are changed
more seldom. Your C-programs read those directly, but you may edit those text files by means of the GUI, where
parameter checking may be achieved easily.
Of course you may browse these files in the Windows fashion.

Default Parameter Directory

Because it was too easy to mix up parameter files for different simulation runs, the GUI supports the use of a default
parameter directory. Modules see a parameter -PD:\Vitess\Test and then should read and write files relative to this
directory. The GUI cares to copy files of other origin to this directory if necessary.

Save and Restore Settings

VITESS saves all settings under direct control to .gui files. Later you may restore these settings.
You may save by the file menu, or you are asked to save if you want to load new settings or leave VITESS, and have
unsaved settings.
For simulation series which need no manual interaction, you may store simulation series to .tcl files where specially
selected parameters are varied.

Controlled Execution

Simulation pipes are started by means of the GUI, which gathers and checks parameters to be transformed to a lengthy
Tcl command string. The started module processes are monitored then and their activity is shown. If all modules have
finished, their non-pipe output, which has been directed to temporary files, becomes shown in the output window.
You may stop or kill the command pipe at any time. To stop the pipe means to send signals to all modules to end
computation. If modules are prepared for this signal, they cease execution at reasonable points and prepare their final
statistics as if the stream of input neutron samples from the pipe has ceased. If this soft abort fails for some reason,
processes may be killed terminally.

Click for Help

To get information on parameters (meaning, valid input,..) you may just click on the parameter label. Of course you
may search for these descriptions. Description also comes with HTML files for modules, where your browser gets a call
when you select help from module menus.

Logging

The merged output of the VITESS GUI and the non-pipe output of modules is shown in the output window and is
copied to a log file, the date being part of the file name.

Software Tools

C/C++ Compiler

We chose GNU gcc for Unix binaries and Microsoft Visual C++ to compile Windows executables. Makefiles for both
compilers are output of a Perl script mmake.pl, which contains all information on module dependencies.
Modules may be from other computer languages, as long they stick to the binary format of neutrons in the pipe, and
know how to process arguments.

19/02/08 2

For C/C++ this is much easier, because common definitions and tool routines may be used.

Tcl/TK

Tcl is an open source multi-platform programming shell, abstracting features of the operating system.
TK brings in X-Windows and the MS Windows GUI. VITESS uses the features of the BLTWish extensions if given,
but works fine with Tcl/TK version 8.4 without extensions. We use plain Tcl/TK, without any own C-extension.
Because most Unix deviates have Tcl/TK installed, we distribute VITESS without this base, but for Windows we put
the Scriptics compilation plus BLTWish extensions to the self-installing program. Of course this is not part of the
VITESS software, and you might chose to use other or newer distributions of Tcl/TK and BLTWish.

VITESS Conventions
Code, sources and documentation are put to specific subdirectories under the chosen installation.

Installation Directory

the path must not contain names with blanks, do not use C:\Program Files.
install_*.txt tells how to install VITESS
license.txt contains terms of use.
The file Vitess is the main Tcl script to be called, the first line specifies which wish is used.

GUI
has all other *.tcl sources which are auto-loaded

MODULES
binary executables for modules. A Module a comes in variants
a.exe windows
a_Linux 32 bit Intel systems
a_Linux_x86_64 64 bit, Opteron, Xeon
a_SunOS Solaris
a_OSF1 Tru64 alpha

SRC
has all module sources and files necessary for compilation.

BITMAPS
auxiliary graphic files

WWW
HTML and GIF files of the documentation

FILES
parameter files and example directories; contains reference instrument simulations for validation of new
releases

RelNotes
release notes of VITESS releases

TOOLS
IDL / PV-Wave routines for visualisation of neutron data
grid_command.pl

When installed under Unix the main Tcl/TK source Vitess has to be adopted to the Tcl/TK installation path by help
of the installAndTest script.

When installed by the self-extracting program generated by InnoSetup under Windows, the installation directory may
contain the Tcl/TK distribution, too. These files as the subdirectories bin, demos, doc, include, and lib come
from the Scriptics Tcl/TK distribution and are not part of the VITESS software itself, but are added here for
convenience.

19/02/08 3

file:///C:/program

Subversion Repository
The subversion (svn) repository at https://www.hmi.de/svn/vitess/trunk is a mirror of the directory tree of the VITESS
installation. Developers communicate by means of subversion, where each person has his own working directory, to be
committed to the repository when ready. An official release corresponds to a svn version number, like the release 2.6 to
svn number 26.
Intermediate svn versions may be used by developers and interested persons, but have not undergone integration and
quality tests.
Mere bug fixes between major official releases are announced, will have different svn version numbers, but just
supersede the published version.

Integrate a Module to VITESS

If you plan to add a new simulation module you probably understand the overall idea of neutrons samples in the
simulation pipe, and how neutron states are coded in the C struct Neutron. You may then edit a program example.c
to read command options, process neutrons, and write statistical output.
Assumed you work with Windows, the compiled output example.exe then should be copied to the MODULES
directory.
Without further modification of the GUI you may then test your module as an „external command“. To use an external
command with the GUI you have to specify the execution file, and all parameters as string input. Thus you may use
your module immediately, but without the comfort of GUI parameter edit, check, and help.

Program Example

In a program example we will comment in detail code snippets necessary for an example module example.c.
example.c

uses controlled interrupts
general.h

declares time,wavelength,probability as double
and position, vector and spin as double[3]

init.h
declares macros and utility routines of

init.c
parses standard parameters --B --f --F --G --J --L --P --U --Z

Structure of example.c

/*************************/
/* VITESS module example */
/*************************/
#include "init.h"
int ParA;
/* own initialisation of the module */
void OwnInit(int argc, char **argv) {

char *arg;
int Option;
fprintf (LogFilePtr," \n") ;
print_module_name("example") ;
argv++; /* skip program name */
while ((arg = *argv++)) {
 arg++; /* skip - char */
 switch (*arg++) {
 case 'A':

sscanf(arg, "%d", &ParA); break;
/* ... */

 }
}

}

19/02/08 4

https://www.hmi.de/svn/vitess/trunk

void OwnCleanup() {
/* do some final action, like logging. */
fprintf(LogFilePtr,"\nsome logging");

}

int main(int argc, char **argv) {
Neutron output;
int i;
Init(argc, argv);
OwnInit(argc, argv);
DECLARE_SOFTABORT
while(ReadNeutrons()!= 0)
 for(i=0; i<NumNeutGot; i++) {

CHECK
/* process the neutron ... */
WriteNeutron(&output);

 }
soft_exit:
OwnCleanup();
Cleanup(0.0,0.0,0.0, 0.0,0.0);
return 0;

}

OwnInit should process only options which are specific for this module, others should be left for the generic Init
subroutine.
ReadNeutrons is a general tool routine which sets the global variable ReadNeutrons.
WriteNeutron and Cleanup are tool routines you should use. Put module specific code to OwnCleanup.
Most of your specific code will be around the „process the neutron“ comment.
All non-pipe verbose output should be printed to LogFilePtr, output to stdout is reserved for pipe neutrons, and
output from different modules to stderr is mixed up to rubbish.
Macros DECLARE_SOFTABORT and CHECK are for controlled abort of pipe execution. CHECK should be inserted
where a jump to soft_exit is possible; computation time between successive CHECK calls should be short.
You might look at slit.c as the simplest real module to see more.

Structure of general.h

#ifndef GENERAL_H
#define GENERAL_H
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#ifdef _MSC_VER
define M_PI 3.14159265358979323846 /* pi */
..
#endif

typedef double VectorType[3];
typedef double DoublePair[2];
typedef struct {
 TotalID ID;
 char Debug;
 short Color;
 double Time;
 double Wavelength;
 double Probability;
 VectorType Position;
 VectorType Vector;
 VectorType Spin;
} Neutron;
#endif

19/02/08 5

The GENERAL_H ifdef-clause permits nested includes.
_MSC_VER is defined for MS Visual / Net C++.

Structure of init.h

#ifndef INIT_H
#define INIT_H
#include "general.h"
extern long BufferSize; /* size of the neutron input and output buffer */
extern Neutron *InputNeutrons; /* input neutron Buffer */
extern Neutron *OutputNeutrons; /* output neutron buffer */
extern long OutNeutPtr; /* points to the next free position in OutputNeutrons */
extern long NumNeutGot; /* number of neutrons read in the current batch */
extern long NumNeutRead; /* number of neutrons read in total */
extern long NumNeutWritten; /* number of neutrons written in total */
extern FILE *InputFilePtr; /* stream from which the neutrons are read */
extern FILE *OutputFilePtr; /* stream to which the neutrons are written */
extern FILE *LogFilePtr; /* stream to which things are logged*/
extern char *InputFileName; /* file to read neutrons */
extern char *OutputFileName; /* file to write neutrons */
extern char *LogFileName; /* log filename */
extern double Temp; /* Temperature of the simulation */
extern long idum; /* random number specific */
void OutputBufferFlush();
void Init(int argc, char **argv);
void Cleanup();
int ReadNeutrons();
void CopyNeutron(Neutron *source, Neutron *dest);
void WriteNeutron(Neutron *OutNeutron);
long parseline(char *Buffer, char *ptr[]);
long ParseFileLine(FILE *In, char *ptr[]);
long LinesInFile(FILE *In);
void ReadSourceData(double* p_pCurrent, double* p_pTimeMeas);
void WriteSourceData(double p_dCurrent, double p_dTimeMeas);
void print_module_name(char name[]);

#ifdef _MSC_VER
define CHECK /* test semaphore and go my_exit if finished */
define DECLARE_SOFTABORT /* windows ... */
#else
include <signal.h>
static int finish;
void abort_handler(int sig);
define CHECK if (finish) {goto soft_exit;}
define DECLARE_SOFTABORT signal(SIGTERM, abort_handler);
#endif

#endif

19/02/08 6

GUI Integration : Editing Tcl Code
To have a smoother integration to the graphical user interface, you will edit Tcl code. You need not be a Tcl expert to
do this. If you do it like it has been done for other modules, that is copy from existing code, you may do it as filling a
form. Programming mistakes mostly aren't fatal, and the Tcl environment complains to give you a clue in case of an
error.

Some ideas about Tcl will help. In general every text line in Tcl is a command, where command parts are separated by
white space.
set a 5
sets the variable a to 5; set is the command, the number of blanks before 5 does not matter.
puts a + 1
prints „a + 1“. To print the sum 6 you need
puts [expr $a + 1]
where $a denotes the value of variable a, and expr is the command to evaluate an arithmetic expression. The
parentheses [] are to be interpreted as „evaluate what's in [] and take the result“.

Another building block is lists. The VITESS GUI relies on lists of descriptions.
set li {a 3}
defines variable li as a list of two items. The restriction „one command per line“ is lifted for lists, that is list contents
between opening and closing curly brace may span many lines like in
set li {a

b
c}

set l2 [list x $li]
which defines variable l2 as a list of 2 items, where the second item is the nested list $li with tree items.

set l2 {x $li}
would not work, because there is no direct variable substitution within curly braces, and the second list item of l2 would
be the silly string “$li”.

How to add a Module like slit to the Vitess GUI
1. Declare module slit in AvailableSET, the list of known modules

gSet slitESET ...
2. do more if your module needs special parameter files
3. Modify generateVitessCommand

if the executable file is not slit.exe
4. Copy slit.exe from SRC/ to MODULES/
5. Put slit.html help to WWW/

You mostly edit lists to add your module and define module parameters.

gSet is a command, xxxESET is the nested list variable with almost all parameter definitions for that module. If you
have a module xxx, you must provide a variable xxxESET.

If your module needs special parameter files of extension par and you want to edit these parameter files with GUI
help:

1. gSet parESET for parameter files with extension par
 As exampleESET this is the list description for all parameters which may be part of a *.par file.

2. Modify editFile
This is more ambitious, as you write a Tcl procedure, but you may learn from others.
1. Modify editSave

The procedure editSave is for saving edits.
2. Write serializeParFile

serialising a file means writing the GUI parameters to a file or to read parameters from a file
serializeXyzFile is the procedure to serialise data of parameter type xyz

3. Add a line in fileDialog (tools.tcl)

19/02/08 7

Insertion of Modules slit and polariser_sm to the Module List

(vitess.tcl)

proc makeModuleSets {} {
 global AvailableSET
 set AvailableSET {
 {source {source_const_wave source_HMI source_ILL
 source_short_pulsed source_ESS source_IPNS source_ISIS source_SNS
 source_ESS_LPTS} source}
 {guide {} guide}
...

 {spacewindow {space slit spacewindow spacewindow_multiple grid}
 {space slit spacewindow spacewindow_multiple grid}}
...
 {polariser {polariser_he3 polariser_sm} {polariser_he3 polariser_sm}}
...
 }
}

AvailableSET is a list of module descriptions available. Because we have so many modules they are grouped like
the many source modules. spacewindow is the name of the module group, slit a specific module; the second
occurrence of slit tells which help information belongs to that module – as you can see all source modules refer to
the same source help information.

Definition of Parameters for slit in vitess.tcl

set slitESET {
 {dist_slit float "" {"distance\n to slit [cm]" "" "" d} ge0}
 {width_slit float "" {"width [cm]" "width of rectangular slit [cm]" "" W}}
 {hite_slit float "" {"height [cm]" "height of rectangular slit [cm]" "" H}}
}

If you have a module slit, you need a Tcl list slitESET.
slit has 3 float parameters with options -d, -W, and -H. dist_slit is the internal name for the distance value which must
be non-negative (ge0).

Parameters for polariser_sm are more demanding:

gSet polariser_smESET {
 {pfile pareditablefile polariser_SM.par {"parameter\nfile" "" "" P} w pol 1}
 ...
 {}
 {x float 100 {"position\nX [cm]" "x centre position of the rectangular
geometry polariser" "" a}}
 {y float 0 {"position\nY [cm]" "y centre position of the rectangular geometry
polariser" "" b}}
…

Parameters may be of kind int, float, string, radio and file. Parameters are grouped in chunks separated by headers ({}
or {„This is a header“ header}).

Each chunk shows int, float, string, and file parameters in groups of the same kind, where e.g. 3 float values are
grouped per row.

The x parameter is a float value with default 100, labelled „position X[cm]“ with a line break after position, it has a
longer help description, and corresponds to option -a.
Parameter pfile is an editable file, residing in the parameter directory, default file name is polariserSM.par, and the
corresponding option is -P. The file must be writeable (w), it's file extension is pol, and this parameter must be specified
(1).
Parameter names like pfile, x, y here are arbitrary made of letters, digits and underscores, and must be distinct for each
module, but need not be different for different modules.

19/02/08 8

General Positions and Meaning in Parameter Lists
Parameter lists should have names ending with (or at least including) ESET like singleDetectorESET.
List items 0,1,2.. have a position-dependent meaning.
0 depicts the first list item as Tcl counts list items 0,1,...

 0 name of global variable
 1 type, one of {float int string longstring select radio filename editablefile browsefile browsedir
 parfilename pareditablefile parbrowsefile moneditablefile mon2editablefile}
 browse indicates entries which are selectable by a file browser
 par indicates a file which must reside in the special default (parameter) directory
 moneditablefile is a pareditablefile and a monitor output file of 1-dimensional data,
 where mon2editablefile is for 2 dimensional data

 2 default value
 3 comment list
 item 0: label text
 item 1: long description text (optional)
 item 2: callback procedure to show long descr. (optional)
 item 3: command option prefix string (optional)

 other entries depend on type

 for type select
 4 list of pairs with {name_appendix default_bool}

 for types browsefile browsedir editablefile parbrowsefile pareditablefile
 moneditablefile mon2editablefile

 4 r for a readable file,
 w for a valid filename
 5 file extension, used to specify GUI-editable files
 6 1 for mandatory
 7 d for directory

 for types filename string longstring
 4 like browsefile
 5 dummy
 6 like browsefile

 for type radio
 4 list of selectable items
 5 list of corresponding keys (may be omitted)

 for types float int
 4 min or 1 if no value 5, but a valid specification is necessary
 may specify a range like gt3 for values greater than 3, or use comparison operators are
 eq,ne,ge,le,gt, and lt like lt100 for less than 100
 5 max
 for control variables additionally
 6 not needed: if this is 1, then empty input is allowed

19/02/08 9

Another Parameter Set Definition, now for Module frame

Frame
###
gSet frameESET {
 {Transformation header}
 {seq radio RTM {sequence "sequence of Rotation, Translation, and Mirroring" "" S}
 {RTM RMT TRM TMR MTR MRT} {1 2 3 4 5 6}}
...

We include this to show a radio selection parameter, where e.g. the GUI selection RMT corresponds to parameter -S2

Definition of parameters in *.pol files

gSet polESET {
 {dx float 60 {"dimension\nX [cm]" "length of the polariser"} gt0}
 {dy float 10 {"dimension\nY [cm]" "width of the polariser"} gt0}
 {dz float 10 {"dimension\nZ [cm]" "height of the polariser"} gt0}
 {nc int 9 {"number of\nchannels" "number of channels in vertical direction"} ge1}
 {dw float 0.05 {"wall\nwidth [cm" "width of the wall between the channels"} gt0}
 {cp float 0 {"cutoff\nprobability" "minimal probability weight transmitted"} ge0}

…
As you may see it is not necessary to specify an option character here, values of parameters in files are read from the
file, and are not provided as GUI input value.
Parameter dx is forced to be positive here (gt0) as nc is forced to be a non-negative integer.

Necessary Changes of Edit/Save Routines for Parameter Files
(vitess.tcl)
Editing parameter files is facilitated by just defining the Vitess parameter lists, but you must provide code to read and
write the special parameter files, and add a unique parameter file extension (pol in the example).

proc editFile {var param ext app} {
Edit parameters from a parameter file with extension ext.
varapp is the name of the parameter file, param is a parameter for editSave.
This GUI generator relies on serialize${ee}File (where $ee is capitalized $ext) to read a
file
and editSave to store the results.
…
switch $ext {
 chp - crs - ine - ref - san - pow - pol - iso {set special 1}
 default {
…
 }
}
…
if $special {
 switch $ext {
 iso {serializeIsoFile $f r $var $app}
 pol {serializePolFile $f r $var $app}
 chp {serializeChpFile $f r $var $app}
 ...
 }

 generateEntries $w.v ${ext}ESET {} $app
} elseif {$f != "0"} {
 while {[gets $f line] >= 0} {$w.v.text insert end "$line\n"}
}
…

editFile is called when it comes to editing a parameter file. Depending on the extension different things are to be
done. You add the line pol {serializePolFile $f r $var $app} and provide the procedure
serializePolFile.

19/02/08 10

editSave is called when when a parameter file has to be stored. You again add the line
 pol {serializePolFile $f r $var $app} and provide the procedure serializePolFile.

proc editSave {var param ext app {saveAs 0}} {
…
catch {
 switch $ext {
 chp {serializeChpFile $f w $var $app}
 crs {serializeCrsFile $f w $var $app}
 san - pow {serializeSamFile $f w $var $app $ext}
 ...
 pol {serializePolFile $f w $var $app}
 default {puts $f [$w.v.text get 1.0 end]}
 }
}

proc serializePolFile {f mode var app} {
 set nlist {dx dy dz nc dw cp gx gy gz ax ay az}
 foreach l $nlist {
 upvar #0 lapp $l
 }
 if {$mode == "r"} {
 foreach l $nlist { catch {unset $l}}
 if {$f == "0"} return
 readNumItems $f $nlist $app
 } else {
 puts $f "$dx $dy $dz\n$nc $dw $cp\n$gx $gy $gz\n$ax $ay $az"
 }
}

pol files are text files with 4 lines of 3 numbers each.
Reading is done with the help of the readNumItems tool routine, writing just calls the puts command.
GUI values are accessed by global variables with an special appendix $app like dx$app.

Changes, if Module Name and Name of executable File differ
(comexe.tcl)

compose the VITESS command pipe string
###
proc generateVitessCommand {} {
…
for {set i 1} {$i <= $maxModule} {incr i} {
…
switch $var {
 source_HMI {set com "source$sys -S1"}
 source_ILL {set com "source$sys -S1"}
 source_short_pulsed {set com "source$sys -S2"}
 source_cws {set com "source$sys -S1"}

…

generateVitessCommand is the Tcl routine called when it comes to generate the overall pipe command. You
need only insert a single line for your module like it is done here for source_HMI. As you may see it is possible to
use one program source$sys for different modules with a silent parameter (-S in the example).

It is default behaviour to call slit.exe for module slit under Windows, so we do not add code for these simple cases.

19/02/08 11

Changes for File Dialogue File Types
(vitess.tcl)

proc fileDialog {operation {ext ""} {ifile Untitled}} {
Type names Extension(s) Mac File Type(s)
#---
set types {
 {"All files" {*}}
 {"X,Y ASCII files" {.dat}}
 {"2 D Intensity files" {.out}}
 {"chopper files" {.chp .par .dat}}
 {"crystal description" {.crs .par .dat}}
 {"powder sample description" {.pow .par .dat}}
 {"sans sample description" {.san .par .dat}}
 {"sample reflectometer description" {.ref .dat}}
 {"inelastic sample description" {.ine .par .dat}}
 {"elastic isotropic sample description" {.iso .par .dat}}
 {"polarizer sm description" {.pol .par .dat}}
 {"GUI settings" {.gui}}
 {"Batch command files" {.bat}}
 {"Tcl files" {.tcl}}
}

If we tell the Tcl/TK browser what file type we're looking for, it restricts files shown to those of that type. Here we
added that polarizer sm description files come with extensions .pol, .par or .dat.

19/02/08 12

Speeding up Your Simulation

Split the Pipe
If you vary mostly parameters of modules in the end of the pipe, you may save much time if you save the output of the
first part of the pipe to a file. This file then may be read over and over again.
This file should reside on a local disk. If you have a high number of trajectories, consider to use one of the GNU
random number generators instead of ran3.

Switch to Batch Processing
Some simulation started on your laptop may take too long there. It is easy to switch to different hardware, only copy
your instrument definition and contents of the working directory to a Linux server. You may work with the GUI there,
too. but for simulations lasting days it might be better to save Tcl commands and start pipes from the command shell.

Use a Grid
If you know how to start batch jobs on a Linux machine it's only a small step to use a grid of compute nodes. We give
some details in the final chapter.

Who is to blame?
If you have a pipe of 20 modules it may seem all modules have equal impact on the performance. If you watch a
working Vitess pipe with the task manager under Windows or the top command under Linux, you will see the truth. It's
one module in most cases which makes the CPU load, and that module probably is a source module, or a module which
absorbs neutrons like choppers do, or a module with complicated reflection/absorption calculations like sm_ensemble.

Reading the documentation more carefully you may find parameter settings for that module, which by taking into
account some extra knowledge you may provide speed things up, or you may find that this module is inappropriate at
all.

If you have the feeling that this module just wastes time for nothing, you could debug that module. Cut the pipe before
that module to have a neutron input file. Asking the author of the module by email may be easier.

Using Pipes for Grid Execution
When a simulation takes very long time, you may consider computer grids to do the lengthy number crunching.

The Vitess GUI will not be of much help then, because you won't sit there watching ... in the GUI's output window. Of
more concern: You may not have a Tcl/TK installation on grid nodes, and you are told to use the Grid Engine at hand.

The method is to use the GUI to generate the pipe for your instrument and do first runs interactively to sort out simple
errors. Then you save the pipe with “Save as Grid Command”, which generates a shell file to be used on a grid engine.
The Perl script grid_command.pl from the TOOLS directory then helps to execute the pipe on the computer grid.

How to use parallel Pipes

If you start a pipe on n nodes without modification, the only good result can be that all n outcomes are identical. You
probably do not want this, but to improve the statistics of the simulation, to make the sample n times as big.

The pipe output is strictly determined by pseudo random generators. We assume that you double your statistical sample
if you start two pipes with different random number seeds, keeping the number of trajectories of each pipe, and merge
the result appropriately.

There are obstacles in the way: If some module in the pipe uses a filename for output, this filename is used by n pipes,
probably mangling output to garbage. If your pipe has some graphical output this won't do good on grid execution.
“Save as Grid Command” may warn you about that, but side effects may be subtle.

The difficulty is to restrict the pipe to one output file of the last module, or to that of the module before. If only the last
module generated a file, the output files of parallel pipes are to be concatenated. If the last module just consumes
neutron like a detector does, the concatenated output of n pipes is to be fed to the last module in a serial step after
parallel execution of n pipes.

grid_command.pl deals with file output of the final pipe module, or if that has no output file, chops off the last module
and arranges parallel execution of the modules before, and lets them write part result files. In a serial step the
concatenated output then is fed to the final module.

19/02/08 13

Normally all modules of the pipe get the same random seed with the –Z parameter. For parallel execution of pipes this
is changed, each module of each pipe gets a unique random seed by grid_command.pl.

Gain

Parallel execution is of value even for single computers. With multi-CPU (m) boards of dual core CPUs it may be
useful to do up to m * 2 (m * 4 for quad core) parallel pipes. If you want to use multi-node grids, you must provide
some synchronisation of pipes, if you have the second form where the result is gathered in a final serial step.

grid_command.pl uses Unix commands and Perl, which are available on most grid engines. You may use the script
without a grid engine on a multi-CPU PC with Linux.

It may be worth doing it with plain tcl for multi-CPU windows PCs.

Parallel Execution Example at HMI

I'm user JOE, my working directory is /net/home/JOE/vitess on the Linux server dirac at HMI.

After proper building an instrument with VITESS using the working directory, I found my simulation does take so long
I'd like to speed that up using the Grid Engine on the dirac cluster.

So first I create the file /net/home/JOE/vitess/instrument.grd using the Vitess "Save Grid Command" menu. I do this on
a Linux system like dinux4, dinux5 or dirac itself, to have the same hardware architecture, x86_64 in this case.
Contents of this file are

V=/net/home/JOE/vitess/MODULES
P=/net/home/JOE/vitess/FILES/MyInstrument
Z=--Z
L=--L
F=--F
$V/source_Linux_x86_64 -S1 ...

To submit a batch job using 4 pipes on a single node of the Grid Engine I call

grid_command.pl instrument.grd 1 4 /home/JOE/vitmod /home/JOE/vitwork -l cpu=8 -l vf=1G

I use the directory /home/JOE because this file system is visible on the grid nodes, too.
The script creates the directories /home/JOE/vitmod/ and /home/JOE/vitwork/ if they do not exist.
Because /net/home/JOE/vitess/MODULES/ is invisible for dirac compute nodes, all used *_Linux_x86_64 executables
are copied to /home/JOE/vitmod, plus this script itself, and referenced files from
/net/home/JOE/vitess/FILES/MyInstrument plus instrument.grd are copied to /home/JOE/vitwork.

grid_command.pl prepares a batch command file /home/JOE/vitwork/job<x><time>, where
 x is for number of nodes, time Unix time
 -0 4 is special for single node execution, 4 pipes

#!/bin/bash
Grid Engine Parameters
#$ -S /bin/bash
#$ -cwd
#$ -l cpu=8
#$ -l vf=1G
/home/JOE/vitmod/grid_command.pl /home/JOE/vitmod/instrument.grd -0 4 /home/JOE/vitmod /home/JOE/vitwork

The job is submitted internally from grid_command.pl with the Grid Engine submit command qsub.

19/02/08 14

Contents
VITESS Software...1

VITESS Building Blocks..1
Piped Commands...1
Parameters as Command Arguments..1

VITESS Design Principles...1
Multi Platform Support..1
Easy Integration of new Simulation Modules...1
Consistency of Parameters...2

Features of the VITESS GUI...2
Parameters..2
Default Parameter Directory...2
Save and Restore Settings...2
Controlled Execution...2
Click for Help...2
Logging...2

Software Tools...2
C/C++ Compiler..2
Tcl/TK..3

VITESS Conventions...3
Installation Directory...3

Subversion Repository...4
Integrate a Module to VITESS...4

Program Example..4
Structure of example.c..4
Structure of general.h...5
Structure of init.h...6

GUI Integration : Editing Tcl Code...7
How to add a Module like slit to the Vitess GUI...7

Insertion of Modules slit and polariser_sm to the Module List............................8
General Positions and Meaning in Parameter Lists..9
Necessary Changes of Edit/Save Routines for Parameter Files....................................10
Changes, if Module Name and Name of executable File differ.......................................11
Changes for File Dialogue File Types ..12

Speeding up Your Simulation...13
Split the Pipe..13
Switch to Batch Processing...13
Use a Grid..13
Who is to blame?...13
Using Pipes for Grid Execution..13

How to use parallel Pipes...13
Gain...14
Parallel Execution Example at HMI..14

19/02/08 15

	VITESS Software
	VITESS Building Blocks
	Piped Commands
	Parameters as Command Arguments

	VITESS Design Principles
	Multi Platform Support
	Easy Integration of new Simulation Modules
	Consistency of Parameters

	Features of the VITESS GUI
	Parameters
	Default Parameter Directory
	Save and Restore Settings
	Controlled Execution
	Click for Help
	Logging

	Software Tools
	C/C++ Compiler
	Tcl/TK

	VITESS Conventions
	Installation Directory

	Subversion Repository

	Integrate a Module to VITESS
	Program Example
	Structure of example.c
	Structure of general.h
	Structure of init.h

	GUI Integration : Editing Tcl Code
	How to add a Module like slit to the Vitess GUI
	Insertion of Modules slit and polariser_sm to the Module List

	General Positions and Meaning in Parameter Lists
	Necessary Changes of Edit/Save Routines for Parameter Files
	Changes, if Module Name and Name of executable File differ
	Changes for File Dialogue File Types

	Speeding up Your Simulation
	Split the Pipe
	Switch to Batch Processing
	Use a Grid
	Who is to blame?
	Using Pipes for Grid Execution
	How to use parallel Pipes
	Gain
	Parallel Execution Example at HMI

